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Abstract—Autonomous systems pose unique challenges for
sensor fusion applications. In multi-sensor scenarios, a real-time
data geometric alignment system, from initial online calibration
to instant data consistency evaluation, is highly desirable for
effective and efficient deployment of autonomy solutions. In
this paper, we present an entropy-based real-time geometric
alignment system for Radar-Lidar point cloud sensor fusion. The
online alignment system is targetless and relies solely on multi-
sensor point cloud measurements to form an entroy-based test
statistics, requiring no prior information about the perception en-
vironment. Specifically, we design a finite mixture model (FMM)
as empirical probability density function (PDF) to represent
environment as a probabilistic world model. A proper entropy
measure of the empirical PDF according to the perception world
is then introduced to evaluate the FMM randomness. It can be
observed that, even in a generally nonstationary environment,
both Radar and Lidar point clouds can still converge to an
optimal entropy. The gradual fluctuation of this entropy measure
over time can serve as a data consistency metric, enabling the
detection of sudden sensor drifts. A scenario study is carried out
to evaluate and validate the effectiveness and efficiency of the
proposed real-time point-cloud alignment system in real world
environments.

Index Terms—Alignment System, Online Calibration, FMM,
Entropy

I. INTRODUCTION

Autonomous systems pose unique challenges for sensor fu-
sion applications. Data from different sensors (e.g., Radar and
Lidar point clouds) must be geometrically aligned throughout
the fusion process, especially in complicated or dynamic
environments. Initial geometric calibration can be done off-line
but requires a tedious and time-consuming process, leading to
serious difficulties in effective and efficient deployment and
maintenance. Moreover, even a decent calibration is achieved,
factors such as vehicle bumps and aging fixtures can cause
the positions of mounted sensors to drift, and thus worsening
the sensor fusion performance. A targetless statistical measure
with slow fluctuation over time to properly reflect the non-
stationary perception environment is then highly desirable for
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the real-time alignment system, which can handle both initial
online calibration and instant data consistency, and thereby
improving the system efficiency and robustness.

In the applications of sensor fusion for autonomous sys-
tems, commonly used perception sensors are Lidar, Radar and
Camera. The geometric alignment can be broadly categorized
into target-based and targetless. Target-based approaches relies
on auxiliary targets with distinct geometric features, which
can serve as reference points for achieving the coordinate
transformation among various distributed sensors to a spec-
ified center frame. For example, in Lidar-Camera systems,
checkerboard is widely used as auxiliary targets for initial
calibration[1, 8, 23]; in multi-Lidar systems, various highly
reflective materials are commonly used, such as orthogonal
planes [5], retro-reflective targets mounted to the poles [7] and
reflective conical targets [10]; in multi-radar systems, mainly
corner reflectors are used[16]. These methods can achieve high
accuracy; however, they also require tedious (off-line) setups,
making them impractical for real-time or online geometric
alignment in complicated non-stationary environments, and are
incapable of evaluating data consistency in real-time.

To overcome these limitations, targetless methods have
emerged. Ma et al. [11] performed initial calibration by ensur-
ing the alignment of line features extracted from image and
point cloud data. Zhu et al. [24] optimized initial calibration by
extracting vehicle from Lidar point clouds and images using a
semantic segmentation model. Although these methods avoid
tedious offline setups, they still rely on specific natural features
present in the environment.

To eliminate the dependence on prior environmental fea-
tures, a natural approach is to align Lidar or Radar sensors
using point cloud registration techniques, such as Normal
Distributions Transform (NDT) [3] and Iterative Closest Points
(ICP) [2, 22]. For example, Wei et al. [20] proposed a two-
stage method for automatic Lidar calibration in road environ-
ments. Their approach first perform a coarse calibration using
the ground plane, followed by refinement using iterative clos-
est points with normal (ICPN) and octree-based optimization.

Another feasible approach is to leverage entropy to evaluate



the alignment quality of sensor data. Sheehan et al. [18]
estimated the environmental distribution using Lidar measure-
ments and optimized geometric alignment by employing Rényi
quadratic entropy as a cost function. Meanwhile, Pandey et al.
[15] used mutual information between the grayscale values of
camera images and the intensity of the Lidar point cloud as
the cost function of Lidar-Camera initial calibration.

These entropy-based methods do not rely on any environ-
mental priors, nor require significant computational power,
making them well-suited for real-time alignment quality eval-
uation in autonomous systems. Moreover, based on processing
empirical probability distributions of sensor data, they can
effectively address the heterogeneity problem of uncertainty
of Radar and Lidar point cloud. Therefore, we choose to
construct our Radar-Lidar point cloud alignment system based
on entropy-based methods.

Additionally, several deep learning based targetless methods
have been proposed [4, 9, 17]. However, these methods are
highly dependent on specific dataset and may lose effective-
ness when sensor types change.

In this paper, we present a targetless Lidar-Radar point
cloud alignment system. Our system begins by estimating the
distribution of measurements, making the resulting probability
density function (PDF) a direct function of the calibration
parameters. Then we employ the Rényi Quadratic Entropy
(RQE) of the estimated PDF as cost function. Notably, this cost
function depends solely on Lidar and Radar measurements,
meaning our method does not require any environmental
priors. The quality of sensor alignment can be evaluated
by monitoring the gradient of the cost function. Finally,
we validate the effectiveness and real-time performance of
the proposed approach using real-world data. Note that the
alignment system is a part of performance evaluation systems
of our metrics framework [21].

The remainder of this paper is organized as follows: Section
II introduces our alignment system, detailing the theoretical
foundations and the algorithmic implementations. Section III
presents a series of experiments conducted to validate the
effectiveness of our proposed method. Finally, section IV
concludes the paper with a summary of findings and point
out interesting future work directions.

II. PROBLEM FORMULATION AND PROPOSED METHOD

Calibration between heterogeneous sensors and the evalu-
ation of calibration quality are both crucial and challenging
tasks for autonomous systems. Lidar and Radar operate based
on different perception principles, leading to difference not
only in information density but also in measurement uncer-
tainty. In this study, we employ a Gaussian mixture model
(GMM) to provide a unified representation for both Radar and
Lidar point cloud. The covariance matrix is used to capture and
distinguish the difference in perception uncertainty between
the two sensor modalities. We then apply RQE to quantify the
order and compactness of the resulting PDF. RQE serves both
as the cost function for optimizing point-cloud calibration and
as a metric for evaluating the quality of sensor alignment.

Fig. 1: The negative cost function when (xSi
, ySi

) changes at
specific frame of our dataset.

We assume that the perception environment follows a PDF,
denoted as p(x). The corresponding observation point clouds
from the Radar-Lidar fusion system are,

Zk
S ≜ {zS(i)}ki=1, (1)

where S = R represents the Radar system and S = L
represents the Lidar system.

By employing a finite mixture model, we assign a Gaussian
kernel to each Radar and Lidar point cloud measurement with
different covariance values. According to the Parsan window
approach [13], the resulting GMM can be expressed as,

p(x | ZNS

S ) ≈ 1

NS

NS∑
i

N (x; zS(i), PS)

∆
= p̂ (x), (2)

where N (x;µ, P ) represents a Gaussian kernel with mean µ
and covariance P .

We utilize the GMM p̂ (x), as an empirical PDF for the
world model p (x). This allows us to formulate real-time
calibration and alignment as an entropy-based optimization
problem. In this task, the objective is to measure the compact-
ness of p (x) using RQE [6]

H(x) = − log

∫
p2(x)dx, (3)

which can be approximated as,

Ĥ(x)
∆
=− log

∫
p̂2(x)dx

=− log
1

N2
S

NS∑
i=1

NS∑
j=1

∫
N (x; zS(i), PS)N (x; zS(j), PS)dx. (4)



Then by applying the Gaussian convolution formula∫
N (x;xi, P1)N

(
x;xj , P2

)
dx = N (xi;xj , P1 + P2) ,

(5)

we have

Ĥ(x) = − log
1

N2
S

C(ZNS

S ), (6)

where

C(ZNS

S )
∆
=

NS1∑
i=1

NS2∑
j=1

N (zS1(i); zS2(j), PS1 + PS2). (7)

From 6 we note that Ĥ(x) is simply a monotonic transfor-
mation of C(ZNS

S ), which is selected as the cost function for
the measuring the entropy-based compactness of p(x). And as
shown in Fig. 1, although this cost function is not a convex
function, it has an obvious minimum for ground translation
parameters.

Note that as a cost function for sensor calibration, RQE
provides a mathematically tractable and efficient way to
measure the compactness of fused Radar-LiDAR point cloud
distributions. Unlike Shannon entropy, RQE has a closed-form
expression when using Gaussian mixtures, making it suitable
for real-time optimization. It requires no environmental priors
and works well even with sparse Radar data. By minimizing
RQE, the algorithm effectively aligns sensor data, making it
ideal for targetless, entropy-based calibration in autonomous
systems.

In an autonomous vehicle, there are two primary coordinate
systems: the sensor coordinate frame and the vehicle coordi-
nate frame. The coordinates x and zSi are expressed within the
vehicle coordinate frame. Let zscSi

denote the measurements in
the sensor coordinate frame of sensor Si. The inverse sensor
model is then given by,

zSi = T (ΘSi)z
sc
Si
, (8)

where T (ΘSi
) denotes the rigid transformation from sen-

sor coordinate frame to the vehicle coordinate frame. This
transformation is parameterized by the calibration parameters
ΘSi

≜ {xSi
, ySi

, zSi
, αSi

, βSi
, γSi

} for sensor Si. By substi-
tuting (8) into (7), we obtain the cost function of calibration
parameters,

E(ΘSi)
∆
= C({T (ΘSi)z

sc
Si
}Ni=1), (9)

where N is the number of sensors.
This cost function serves as a direct metric for calibration

quality. It quantifies the compactness of the joint PDF formed
by Radar and LiDAR measurements. When the sensors are
well calibrated, the fused point clouds align more tightly
in space, resulting in a lower entropy value. Conversely,
misalignment causes the distribution to spread out, increasing
entropy. Therefore, minimizing this cost function corresponds
to achieving the best alignment, making it an effective and
sensor-agnostic quantitative measure of calibration accuracy.

III. EXPERIMENT

A. Dataset

In this section, we validate the algorithm using both the
VoD open dataset[14] and our in-house proprietary datasets.
The VoD dataset includes a ZF FRGen21 4D Radar and a
Velodyne HDL-64 S3 Lidar, providing extrinsic references
for all frames. For our dataset, we utilized the following
experimental platform1 as shown in Fig. 2 to capture data.

Fig. 2: The experimental platform [19].

Fig. 3: The FoVs (top) and coordinate frame definition (bot-
tom) of Lidars and Radars.

Our experimental platform consists of an electric chassis
equipped with three Innovusion Falcon Kinetic Lidars and

1More details about the data center can be found at [19]



eight Continental ARS 548 RDI 4D millimeter wave Radars.
The fields of view (FoVs) and coordinate frame definition of
the sensors are illustrated in Fig. 3. Both types of sensors
operate at a frame rate of 10 fps. The Radar system has a
distance measurement accuracy of 0.15m, an azimuth accuracy
ranging from 0.1◦ to 0.5◦, and an elevation accuracy of
0.1◦. In comparison, the Lidar system has significantly higher
accuracy, with a distance measurement precision of 0.02m.
In this experiment, we utilized the experimental platform
to collect data across 13 different scenarios to validate our
algorithm.

B. Experiment Design

Before performing algorithm, we first preprocess the Lidar
and Radar point clouds separately. For the Lidar point cloud,
we remove ground points that are irrelevant to calibration and
system evaluation. For the Radar point cloud, we compensate
for Doppler velocity at each point using the velocity measured
by the IMU and the initial external reference of the Radar.
After compensation, we filter out dynamic points based on
the adjusted Doppler velocity.

In this experiment, we assess the registration quality of the
Radar-Lidar fusion system by monitoring the gradient of the
cost function,

∂E(Θ|ZNS

S )

∂θS
(10)

When the gradient exceeds a predefined threshold, the calibra-
tion algorithm is triggered to adjust the extrinsic parameters
by optimizing the cost function (9).

In the experiment, we use the BFGS quasi-Newton algo-
rithm to optimize (9).The convergence threshold is consis-
tent with the threshold for judging whether the gradient is
abnormal, both of which are 10−3. A line search satisfying
the strong Wolfe condition is used at each iteration to ensure
that the Hessian remains approximately positive definite. To
prevent numerical oscillation or excessive computation, we
also set the maximum number of iterations to Nmax = 100 to
ensure proper algorithm termination.

During the optimization process, we set the sensor covari-
ances as PS = σ2

SI , assuming that individual sensors are
isotropic. When computing the cost function, we consider
only point pairs within a distance of kσS. This significantly
enhances the computational efficiency of the algorithm [12].
In the experiment, we utilize a KD-tree to efficiently search
for eligible point pairs.

For the VoD dataset, we set the Lidar uncertainty to
σL = 0.1m and the Radar uncertainty to σR = 0.5m. Since
the dataset utilizes a mechanical Lidar with a 360 degree
FoV, we treat the Lidar point cloud as the reference frame
and calibrate the Radar accordingly. For our own dataset, we
performed calibration across 13 different scenarios, setting the
Lidar uncertainty to σL = 0.05m and the Radar uncertainty to
σR = 0.2m. When an abnormal gradient in the cost function
is detected, we fix all sensors except the one exhibiting the
anomaly, treating the stable sensors as the reference frame and

calibrating the abnormal sensor accordingly. To thoroughly
validate the robustness of the algorithm, we initialize the ex-
trinsic parameters of all sensors with values that are expected
to produce anomalous gradients.

C. Calibration Results

Fig. 4: The initial state (top) and calibration results (bottom)
of VoD dataset.

Fig. 5: The initial state (top) and calibration results (bottom) of
our in-house dataset. The results show that mainly the extrinsic
parameters of the Radar point cloud within the dashed box are
corrected.

Figs. 4 and 5 show the calibration results for a specific
frame, where green dots represent Lidar measurement points



and red dots represent Radar measurement points. To highlight
the improvement, the system was initialized with a deliberately
poor extrinsic configuration. In Fig. 4, the calibration results
are clearly visible. In the highlighted region (white box) of Fig.
5, the Lidar and Radar point clouds corresponding to a wall
are initially misaligned due to incorrect parameters. After the
calibration algorithm converges, the point clouds closely over-
lap, demonstrating the effectiveness of the proposed method.

TABLE I: The Calibration Results with σL = 0.05 and σR =
0.2

Lidar Radar
seeda mean std dev seed mean std dev

x(m) 1.2 0.875 0.208 1.3 1.015 0.181
y(m) 0.0 -0.171 0.130 0.3 0.023 0.214
z(m) 1.0 0.560 0.231 0.0 -0.364 0.498

roll(◦) 120 124.685 0.443 0 6.812 1.980
pitch(◦) 0.0 0.392 0.116 0 0.304 1.336
yaw(◦) 120 127.761 0.230 20 18.769 0.288
aFor simplicity, the mean value in the table belongs to the front Lidar and the
left front Radar, respectively, while the standard deviation is the statistical
result of all sensors of the same type.

Fig. 6: The Boxplot of Lidar and Radar Calibration Results.
For simplicity, we merged the results of the same type of
sensors into a single boxplot after subtracting their own mean
results.

Table I and Fig. 6 present the distribution of calibration
results across 13 scenarios in our datasets. For simplicity, we
merged the results of the same type of sensors into a single
boxplot after subtracting their mean results. The boxplots

show very few outliers, indicating that our algorithm demon-
strates a certain level of robustness. However, the algorithm’s
performance on translation parameters is obviously inferior
to its performance on rotation parameters. Additionally, its
overall performance is weaker compared to the 2D-3D Lidar
system. This discrepancy primarily arises from the sparsity of
Radar point clouds, which makes Radar points more likely
to be attracted to denser regions of the Lidar point cloud
during calibration, rather than aligning with their true physical
correspondences in the real world. This effect is particularly
pronounced in the estimation of translation parameters.

IV. CONCLUSIONS

In this paper, we proposed a targetless real-time Radar-Lidar
point cloud alignment system and validated its effectiveness
using real-world data. The method does not rely on any
environmental priors and it can be deployed in a wide range of
environments, making it particularly suitable for sanity/healthy
checks and calibration corrections in autonomous systems.

However, the algorithm’s performance on translation pa-
rameters is notably weaker than on rotation parameters. In
real-world scenarios, where factors such as fixture aging may
affect sensor alignment, translation shifts typically occur on
the centimeter scale. We currently use this algorithm primarily
for correcting rotational extrinsic parameters in Lidar-Radar
fusion systems and will refine the approach to a more general
case.

A key limitation of the algorithm is the sparsity of the Radar
point cloud, which affects calibration performance. In addition,
the algorithm currently operates on a single frame basis
when correcting extrinsic parameters. Incorporating temporal
information by leveraging multiple frames over a time series,
especially when abnormal gradients are detected, could help
compensate for Radar sparsity. Addressing this limitation will
be an important future direction of our research.
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